Vanadium‐Incorporated CoP <sub>2</sub> with Lattice Expansion for Highly Efficient Acidic Overall Water Splitting

نویسندگان

چکیده

Abstract A proton exchange membrane water electrolyzer (PEMWE) in acidic medium is a hopeful scenario for hydrogen production using renewable energy, but the grand challenge lies substituting noble‐metal catalysts. Herein, robust electrocatalyst of V−CoP 2 porous nanowires arranged on carbon cloth successfully fabricated by incorporating vanadium into CoP lattice. Structural characterizations and theoretical analysis indicate that lattice expansion caused V incorporation results upshift d‐band center, which conducive to adsorption boosting evolution reaction (HER). Besides, promotes surface reconstruction generate thicker Co 3 O 4 layer with an oxygen vacancy enhances acid‐corrosion resistance optimizes oxygen‐containing species, thus improving activity stability toward (OER). Accordingly, it presents superior overall splitting (1.47 V@10 mA cm −2 ) Pt−C/CC||RuO /CC (1.59 ), remarkable stability. This work proposes new route design efficient non‐noble metal electrocatalysts PEMWE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When NiO@Ni Meets WS2 Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting

The development of low-cost, high-efficiency, and stable bifunctional electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance for large-scale water splitting. Here, we develop a new strategy for the first design and synthesis of a NiO@Ni decorated WS2 nanosheet array on carbon cloth (NiO@Ni/WS2/CC) composite. This composite se...

متن کامل

Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting.

This paper describes the design, characterization, and utilization of branched TiO2 nanoarrays sensitized with CdS quantum dots as anodes for photoelectrochemical water splitting. The remarkable photocurrent density (∼4 mA cm(-2) at a potential of 0 V versus Ag/AgCl) and high solar to hydrogen efficiency of the materials obtained were ascribed to the novel branched nanostructure and efficient e...

متن کامل

Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting.

Nanostructured metal oxide semiconductors have shown outstanding performances in photoelectrochemical (PEC) water splitting, but limitations in light harvesting and charge collection have necessitated further advances in photoelectrode design. Herein, we propose anodized Fe foams (AFFs) with multidimensional nano/micro-architectures as a highly efficient photoelectrode for PEC water splitting. ...

متن کامل

Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting.

Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C(3)N(4) (mpg-C(3)N(4)) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments th...

متن کامل

Nanoscale strontium titanate photocatalysts for overall water splitting.

SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Angewandte Chemie

سال: 2022

ISSN: ['1521-3773', '1433-7851', '0570-0833']

DOI: https://doi.org/10.1002/ange.202116233